Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

نویسندگان

  • Yu-Te Liao
  • Chia-Hung Liu
  • Jiashing Yu
  • Kevin C-W Wu
چکیده

A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of mesoporous silica nanoparticles for drug delivery to cancer cells

Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...

متن کامل

Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery.

Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) con...

متن کامل

The effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells

Objective (s): In chemotherapy for cancer treatment, the cell resistance to multiple anticancer drugs is the major clinical problem. In the present study, mesoporous silica nanoparticles (MSNs) were used as a carrier for epirubicin (EPI) in order to improve the cytotoxic efficacy of this drug against the P-glycoprotein (P-gp) overexpressing cell line. Materials and Methods: MSNs with phosphonat...

متن کامل

Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery.

pH-responsive polymer shell chitosan/poly (methacrylic acid) (CS-PMAA) was coated on mesoporous silica nanoparticles (MSN) through the facile in situ polymerization method. The resultant composite microspheres showed a flexible control over shell thickness, surface charges and hydrodynamic size by adjusting the feeding amount of MSN and the molar ratio of [-NH(2)]/MAA. The MSN/CS-PMAA composite...

متن کامل

Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery† †Electronic supplementary information (ESI) available: Detailed synthetic procedure, experimental procedure and Fig. S1–S7. See DOI: 10.1039/c4sc03549f Click here for additional data file.

Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive F magnetic resonance imaging (MRI) contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014